The zeta function of H^{3} counting ideals

1 Presentation

H^{3} has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3} \mid\left[x_{1}, y_{1}\right]=z_{1},\left[x_{2}, y_{2}\right]=z_{2},\left[x_{3}, y_{3}\right]=z_{3}\right\rangle .
$$

H^{3} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Gareth Taylor. It is

$$
\begin{aligned}
\zeta_{H^{3}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(s-5) \zeta_{p}(3 s-6)^{3} \\
& \times \zeta_{p}(5 s-7) \zeta_{p}(7 s-8) \zeta_{p}(8 s-14) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1-3 X^{6} Y^{5}+2 X^{7} Y^{5}+X^{6} Y^{7}-2 X^{7} Y^{7}+X^{12} Y^{8}-2 X^{13} Y^{8}+2 X^{13} Y^{12} \\
& -X^{14} Y^{12}+2 X^{19} Y^{13}-X^{20} Y^{13}-2 X^{19} Y^{15}+3 X^{20} Y^{15}-X^{26} Y^{20}
\end{aligned}
$$

$\zeta_{H^{3}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{H^{3}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{36-15 s} \zeta_{H^{3}, p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{H^{3}}^{\triangleleft}(s)$ is 6 , with a simple pole at $s=6$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(s-5) \zeta_{p}(3 s-6)^{3} \zeta_{p}(5 s-7) \\
& \quad \times \zeta_{p}(7 s-8) \zeta_{p}(8 s-14) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-2 X^{13} Y^{8}, \\
& W_{2}(X, Y)=-2-X^{7} Y^{5}, \\
& W_{3}(X, Y)=-1-X^{6} Y^{7} .
\end{aligned}
$$

The ghost is unfriendly.

6 Natural boundary

$\zeta_{H^{3}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=13 / 8$, and is of type I.

